FICHTNER

FINAL CONFERENCE

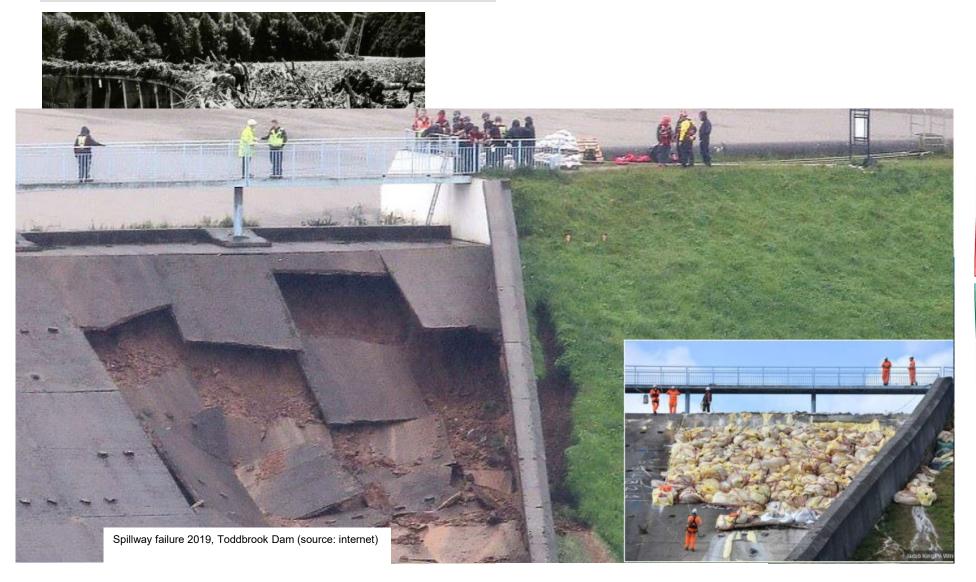
Alliance for Disaster Risk Reduction – ALTER

Tuesday December 10th 2019

Flash floods from Dams' failure.

Best practices in Managing the Risks

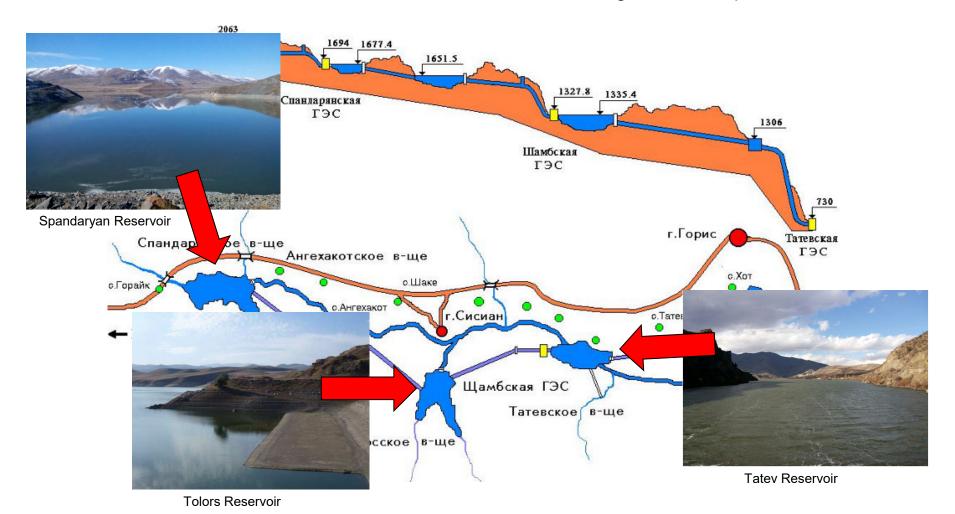
Example: Vorotan Cascade, Armenia


Contents

- 1. Risk Management, why?
- 2. Example Vorotan Cascade
- 3. Flood Studies
- 4. Dam Break Studies
- 5. Emergency Planning
- 6. Discussion

2

Risk Management, why?



Example Vorotan Cascade

Contour Global acquired assets of the Vorotan Cascade with a total installed capacity of 405 MW generated by three individual power plants.

The entire cascade was built between 1970 and 1989 during the Soviet period.

Example Vorotan Cascade

ContourGlobal assigned Fichtner to:

- Perform a detailed assessment of the condition of each dam structure of the cascade
- Supervise geotechnical and geophysical investigations
- Perform stability investigation and analysis of current condition of each dam structure
- Provide recommendations as regards stability improvement measures
- Revise the existing monitoring equipment
- Develop a Monitoring Plan for regular geodetic measurements and seepage control
- Perform flood and dam break studies
- Develop an Emergency Action Plan for potential dam failure

These studies are in progress, geotechnical and geophysical investigations are completed, implementation of improvements in dam monitoring is ongoing

Flood Studies

Purpose:

Checking safety of facilities related flood events

 Method of 'flood frequency analysis' has been applied for estimating the 'design flood' for each dam

Location	Design flood (Q _{1,000yrs}) [m³/s]	Safety check flood (Q _{10,000yrs}) [m³/s]	PMF [m³/s]
Spandaryan Dam	255	357	473
Angeghakot Dam	363	482	639
Tolors Dam	130	181	240
Tatev Dam	512	778	1,032

- Actual inflow and outflow flood peaks and corresponding reservoir levels at the four dam sites were estimated through reservoir routing
- Different scenarios for dams and reservoirs (n vs. n-1; reservoirs at Full Supply Level vs. Max. Operation Level) were studied

Flood Studies

Example Tolors with reservoir initially at Max. Operation Level, with 1,000 years and 10,000 years floods.

				MaxOL				FSL							
Highest admissible water level			Q1000		Q10000)	PMF		Q1000		Q10000		PMF		
Spandaryan	n	2065.00	masl	2064.17	m	2064.39	m	2064.65	m	2063.45	m	2063.65	m	2063.90	m
Sparidaryan	n-1	2065.00	masl	2064.48	m	2064.71	m	2064.97	m	2063.63	m	2063.88	m	2064.16	m
Angoghakot	n	1683.00	masl	1680.10	m	1680.10	m	1680.10	m	1677.40	m	1677.70	m	1678.30	m
Angeghakot	n-1	1683.00	masl	1680.10	m	1680.10	m	1680.32	m	1679.03	m	1679.34	m	1679.72	m
Tolors	n	1653.80	masl	1652.72	m	1652.78	m	1652.87	m	1651.71	m	1651.79	m	1651.89	m
Tatev*	n	1339.00	masl	1336.95	m	1336.95	m	1337.20	m	1335.87	m	1336.06	m	1336.24	m

Reservoir Water Level uncritical

Reservoir Water Level critical but admissible for limited time Reservoir Water Level critical

^{*} With Consideration of Parapet Wall

Purpose:

Studying effects of a partial or catastrophic failure of a dam which leads to an uncontrolled release of water. It may occur due to uncontrolled inflow into a reservoir, effects of disaster like landslides, earthquakes, erosion of dam material due to seepage, piping, overtopping or due to defects in embankments and foundation.

In case of the dams in the Vorotan cascade the Spandaryan, Tolors and Tatev dams are embankment dams for which the most probable dam break scenario is the gradual break due to overtopping. Angeghakot dam is a concrete gravity dam for which the most probable dam break scenario is the instantaneous or sudden failure.

The dam break study performed entails the following:

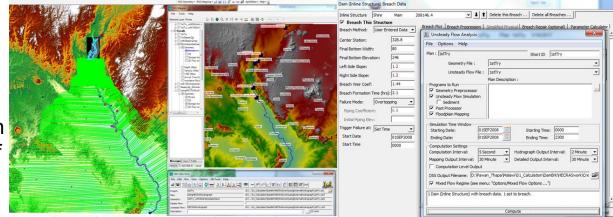
- Determining the outflow hydrograph and the peak discharge
- Routing the peak discharge and prediction of hydrograph at different sections downstream
- Mapping of inundation area
- Determining the time to peak at different location downstream.

Input parameter for dam break modeling

While HECRAS tool has incorporated five different methods/models to estimate the breach parameters (breach bottom width, breach side slopes and breach development time), other numerous investigators have developed other models as well to predict these breach parameters based on the reservoir and dam properties and characteristics, failure modes, etc. All of these models, available till now, including those available in HEC-RAS, have been considered in this study to estimate the breach width and breach formation time for the dam failure analysis.

Breach Formation Time

	Breach formation time, t _f [hrs]					
Model	Spandaryan	Angeghakot	Tolors	Tatev		
Singh and Snorrason (1982,1984)	0.25 - 1		0.25 - 1	0.25 - 1		
MacDonald and Langridge-Monopolis (1984)	3.8		2.7	1.3		
FERC (1987)	0.1 - 1	For Concrete	0.1 - 1	0.1 - 1		
Froehlich (1987)	1.2	Gravity dam:	0.9	0.6		
Bureau of Reclamation (1988)	2.7	0.1 - 0.5	2.3	1.4		
T. T. 1.0:11 (c. (1000)	1.9	(USACE) 0.1 - 0.3 (FERC) 0.1 - 0.2	1.6	1.1		
Von Thun and Gillette (1990)	0.6		0.6	0.7		
SMPDK model (1991)	1.5		1.3	0.8		
Froehlich (1995)	1.5		1.0	0.6		
Froehlich (2008)	1.2	(NWS)	0.9	0.5		
Sattar (2014) - GEP models	1.9	, ,	1.7	1.4		
Saberi & Genz (2015)	3.8		2.8	1.7		
Considered breach development time	1.5 hrs	0.3 hrs	1.0 hrs	0.5 hrs		

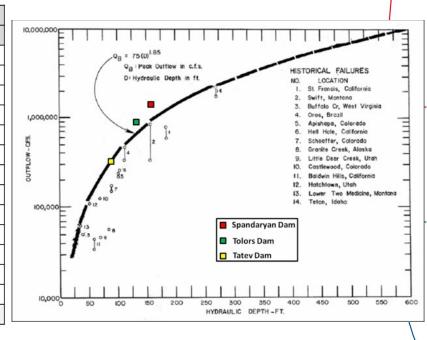

Methodology for dam break modeling

Estimated breach parameters - input to the unsteady flow HEC-RAS model. The dam - modeled as an inline structure connected at upstream to reservoir. The reservoir - modeled as a storage area defined by its elevation-volume curve and provides the upstream boundary condition to the model.

The downstream end of model set-up - taken sufficiently far enough for the flood routing & inundation mapping - about 150 km downstream from the Spandaryan dam - where the normal flow depth can be safely given as the downstream boundary condition of the model.

The required river profile and the river cross-sections data completely encompassing the possible inundated area is extracted from the DEM of the area – created from SPOT 6 and SPOT 7 high-resolution satellite data & SRTM DEM data

ArcGIS & HEC-GeoRAS are used for the pre- & post-processing and HECRAS is used for the modelling of dam breach, propagation of the ensuing dam break outflow hydrograph downstream along with the mapping of the inundation in the flood plain along the river course

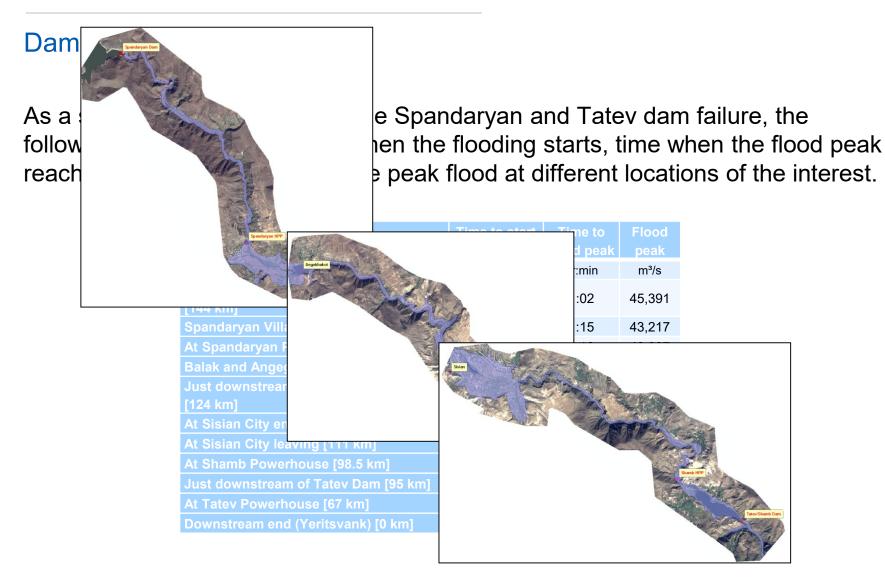


Results – Plausibility check of flood outflow

Several peak flow regression models have been developed from historic dam failure data at different times. These models have been used for several dam safety studies. The dam break outflow peak computed from HEC-RAS is compared to the peak floods from those observed failure-data-based regression equations as a test for reasonableness.

Models	Peak Outflow, Qp [m³/s]					
Models	Spandaryan	Angeghakot	Tolors	Tatev		
Singh and Snorrason (1984)	17,127		10,869	4,444		
MacDonald and Langridge-Monopolis (1984)	21,999		13,780	5,222		
Costa (1985)	22,645		14,057	5,227		
Evans (1986)	22,398	Not	13,412	4,892		
Froehlich (1995)	45,127		27,552	8,971		
Xu & Zhang (2009)	42,728	applicable for	22,474	5,305		
	30,824		24,034	11,659		
Pi	19,001	Crowity	9,241	2,239		
Pierce et al. (2010)	34,764	Gravity dam	17,472	4,193		
	48,996	uam	25,773	6,376		
Saberi & Genz (2015)	42,940		22,301	5,442		
Instantaneous Failure Peak (Analytical)	44,159		29,432	8,962		
SMPDBK model/ Wetmore & Fread (1984) (Analytical)	33,363		21,331	6,386		
Peak outflow of the estimated breach Hydrograph (HECRAS)	45,291	8,491	25,201	8,478		

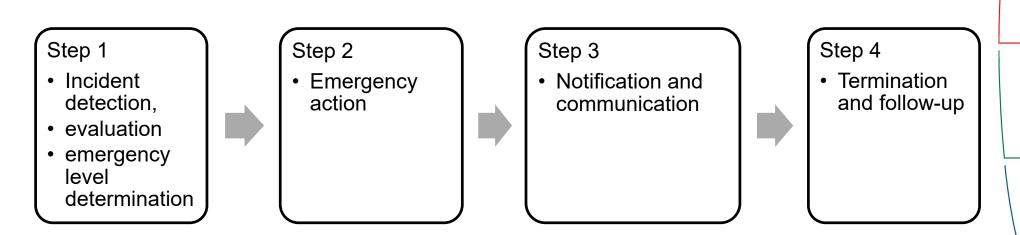
The plausibility checks indicate that the dam break outflow hydrographs simulated by the HEC-RAS model for the dams in the Vorotan cascade are appropriate and reasonable estimates



Results

The dam break study/modeling provides the following output:

- Outflow hydrograph and the peak discharge
- Attenuation of the peak flood through routing & prediction of hydrograph at different sections downstream
- Mapping of inundation area
- Maximum Flood depth
- Maximum channel velocities
- Timing of flood wave determining the runoff time of the peak discharge at different sections downstream



Purpose:

Specification of roles, responsibilities and actions to be taken by individual stakeholders to reduce risk and potential los of life based on dam break studies results.

In case of an emergency event, 4 main steps were identified:

Step 1: Incident Detection, Evaluation, and Emergency Level Determination

Sources of the detection

- Monitoring and operating information available at dam
- Usual inspection procedures (O&M procedures)
- Existing dam studies (stability, monitoring report, technical detailed report, hazard assessment...)

Type of incident

- Instrument values out of normal range
- Earth Spillway Flow
- Embankment Overtopping
- Seepage
- Sinkholes
- Embankment Cracking
- Embankment Movement
- Earthquake
- Security Threat
- Sabotage/ Vandalism

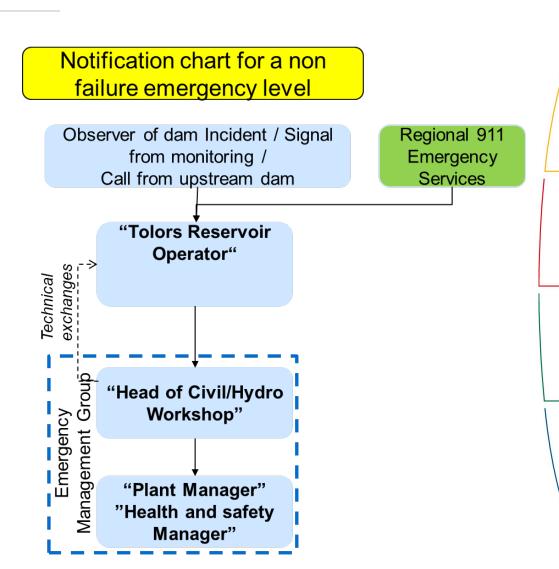
• ..

Emergency level categories

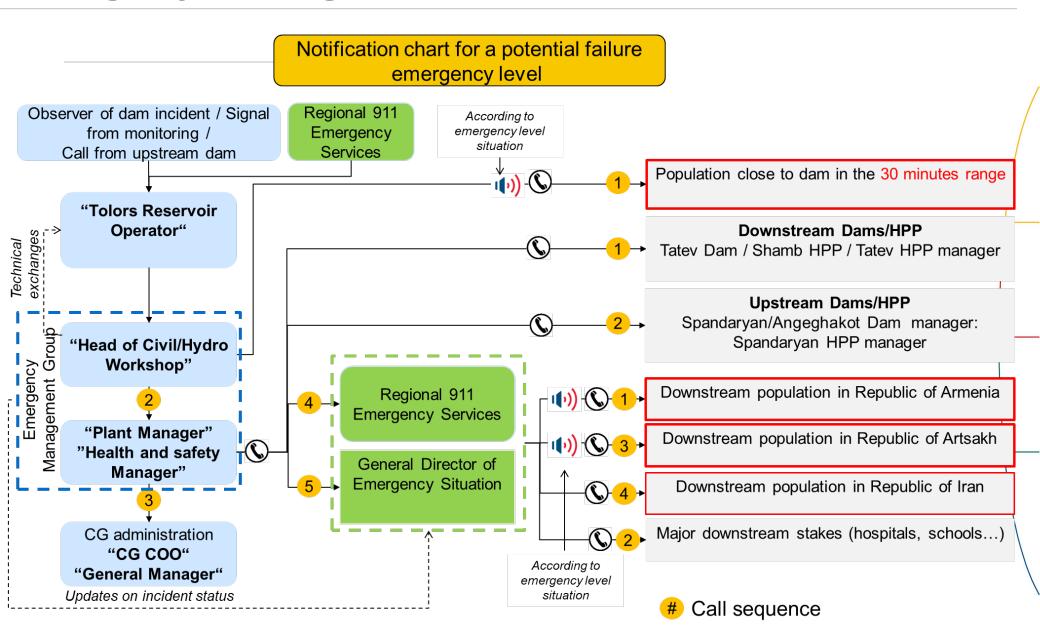
Non-	unusual situation at the dam, not leading to a potential
Failure	failure of the dam.
Potential	unusual situation of the dam that could lead to an imminent
Failure	failure of the dam.
Imminent	failure of the dam has or will occur in a close future.
Failure	lanure of the dam has of will occur in a close future.

Step 2: Emergency Actions for Staff in duty at Tolors Dam (Example)

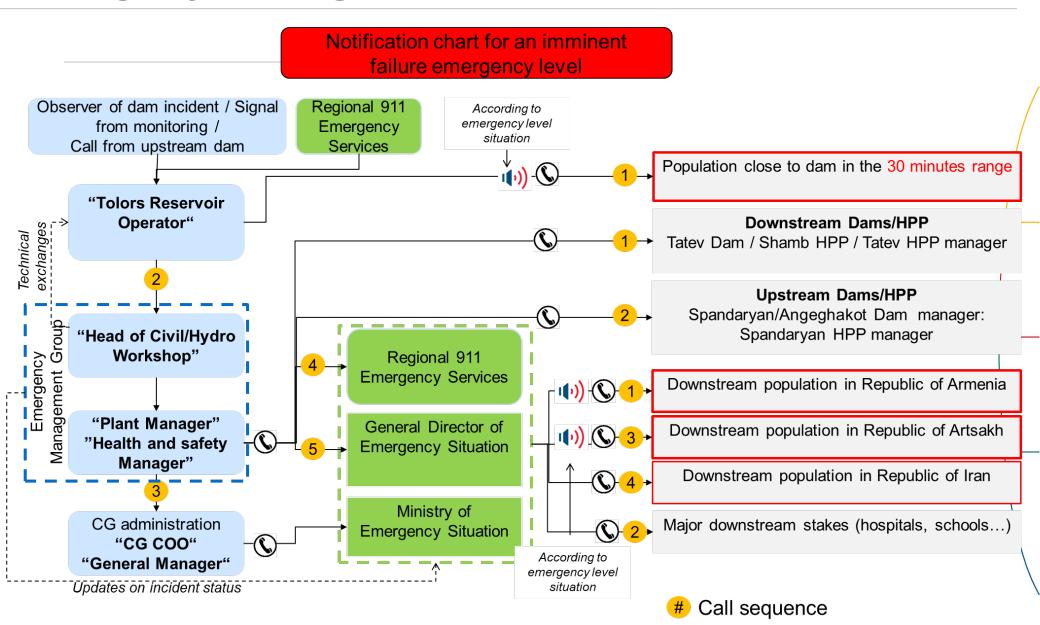
Event	n°	Description of situation	Criteria	Process for confirming observation	Emergency Level
Earthquake	15	Measurable earthquake felt or reported on or within 50 km of the dam. No visible damage to the dam	Reported by local authorities, local inhabitants or felt at dam site. Strong Motion Accelerometers < 0.3 m/s²		Non-failure
	16	Strong earthquake or earthquake resulted in visible damage to the dam or appurtenances. Controllable damages not leading to release of water	Visual checking Strong Motion Accelerometers: • > 0.3 m/s² • And < 0.6 m/s²	Double check reading at Strong Motion Accelerometers Send value to Head of Civil Works Reinforced monitoring and new stability check verifications	Potential failure
	17	Exceptional intensity earthquake or Earthquake resulted in uncontrolled release of water from the dam	Visual checking Strong Motion Accelerometers > 0.6 m/s²	Send pictures to Head of Civil Works for confirming Maximum wait for answer is 10 minutes.	Imminent failure



Emergency Level	Action to be taken
Non-failure	 Make notifications according to flowchart Forbid traffic on dam crest for everyone (use alternative way to come to the dam). Assess extent of damage and visually inspect entire dam. Perform additional tasks as directed by Dam Engineer.
Potential failure	 Make notifications according to flowchart Lower reservoir level: ask Angeghakot dam to stop inflow and Shamb HPP to increase discharge/outflow Forbid traffic on dam crest for everyone (use alternative way to come to the dam). Assess extent of damage and visually inspect entire dam. Perform additional tasks as directed by Dam Engineer.
Imminent failure	 Trigger Water Alarm System for immediate evacuation of downstream population Make notifications according to flowchart Lower reservoir level: ask Angeghakot dam to stop inflow and Shamb HPP to increase discharge/outflow Forbid traffic on dam crest for everyone (use alternative way to come to the dam). Assess extent of damage and visually inspect entire dam. Perform additional tasks as directed by Dam Engineer.



Step 3: Notification and Communication


→ 3 notification flowcharts depending on the emergency level category

Step 4: Termination and Follow-Up

	Step	Who	How	To whom
7	1. Criteria for determining closing of the incident	Head of Civil Works/dam safety	Criteria to determine Emergency Category level are not reached any more	Reservoir operator General manager
ATIOI	2. Incident log to be filled	Head of Civil Works/dam safety	Fill the document : Dam Emergency Termination Log (see appendix)	2
TERMINATION	3. Transmission of the document to officials	General Manager	Mail, phone	Emergency management authoritiesMinistry of Emergency Situation
	4. Declaring an end to public emergency response	Emergency management authorities	Siren, radio, phone	• all warned areas
FOLLOW-UP	5. Closing evaluation	 Contour Global Emergency management Group Emergency management authorities Ministry of Emergency Situation 	 Events or conditions leading up to, during, and following the incident Significant actions taken by each participant and improvements for future emergencies All strengths and deficiencies found in the incident management process, materials, equipment, staffing levels, and leadership Corrective actions identified and a planned course of action to implement recommendations 	Internal use for revising EAP and improving response process and communication with emergency management authorities
_	6. Report on the incident	Contour Global	Fill the documents: 1- After Action Report, based on the closing evaluation 2- Record of Emergency Plan Holders (see appendix) 3- Record of Reviews and Revisions (see appendix)	Internal use for revising EAP

Thanks for your attention

Discussion